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ABSTRACT
The quantum of induced polygenic variability for quantitative traits was compared in the M

2
 and M

3
 generations

after treating the seeds of Basmati rice cultivar T- 23 with gamma- rays and ethyl methanesulphonate (EMS).
There were mutagenic differences for the release of genetic variability in both the generations. In comparison
to EMS, gamma-rays were found to be less effective in generating polygenic variation in terms of coefficient of
variability. Moreover, the characters differed in the manifestation of variability in the two generations. High
induced variability for panicle length, number of grains panicle-1, plant height, days to flowering and days to
maturity was observed in M

2
 and for grain yield plant-1, 100-grain weight and effective tillers plant-1 in the M

3

generation. Therefore, these generations are most appropriate for improvement of these characters through
selection.
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Majority of agronomically important plant characters
are quantitatively inherited. These characters display
continuous variation and in general are controlled by
many genes. The creation of variation for such
characters for the selection to act upon is very important
in crop improvement and this has long been
accomplished through hybridization. However, it has
been conclusively established that different kind of
mutagens when applied to plant tissues, induce mutations
in polygenic characters (Gregory, 1955; Rawlings et
al., 1958; Swaminathan, 1963; Frey, 1965; Gaul and
Aastveit, 1966; Gupta, 1969). The growing emphasis
of micromutations as a valuable tool for improvement
of cultivated species has assumed greater significance
due to the fact that a number of field crop varieties
evolved by this method have been released at the global
level. However, one of the important problems in such
breeding programmes is to determine the generation
when the highest degree of induced genetic variation
for particular trait under improvement is expected to
be generated and the mean stabilized. In the present
investigation, therefore, an attempt was made to study
the relative quantum and nature of induced phenotypic
and genotypic variability, the heritable portion of the

induced genetic variability and its response to selection
for grain yield and its components in the M

2
and M

3

generations following mutagenesis of Basmati rice
cultivar T-23 with gamma- rays ethyl methanesulphonate
(EMS).

MATERIALS AND METHODS
Two thousand and five hundred (2,500) dry well filled
and uniform sized seeds each of late maturing (140
days ) locally adapted Basmati rice cultivar  T-23 were
subjected to 25, 30 and 35 kR gamma–rays and 0.8,
1.0 and 1.2% ethyl methane sulphonate (EMS)
treatments. In order to satisfy the basic assumptions of
genetic analysis for polygenic traits, only morphologically
normal looking plants were taken from M

1
and M

2

generations.  M
2
and M

3
 generations were raised along

with control in RBD with two replications. Forty plant
progenies per treatment were raised. Each progeny
consisted of single row of 2.25 m length with row to
row and plant-to-plant spacings of 20 cm and 15cm,
respectively. In order to understand quantum of induced
variation, data were recorded on five random plants
per replication in each of the 40 plant progenies per
treatment, thus comprising 400 plants in each treatment
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under both M
2
 and M

3
 generations.

The combined data recorded on grain yield and
other polygenic traits of all the treatments of gamma-
rays and EMS in the M

2
and M

3
generations were

subjected to analysis of variance as suggested by
Yonejawa (1979). The phenotypic coefficient of
variation (PCV), genotypic coefficient of variation
(GCV), heritability in broad sense (H) and the genetic
advance (GA) were used as criteria for determining
the appropriate generation for selection.

RESULTS AND DISCUSSION
The estimated mean values for various traits in the
parental (M

0
, M

2
 and M

3
) generations are presented in

Table 1. The mean values of grain yield plant -1, 100-
grain weight and effective tillers plant-1were either
comparable to the control or increased from M

2
 to M

3
.

Similarly PCV, GCV, H and GA for these traits were
more in M

3
 than in the corresponding treatments of the

M
2
generation (Table 2). Both gamma- rays and EMS

treatments caused marked decreases in the grain yield

Table 1. Estimates of parental (M
0
, M

2
 and M

3
) populations mean with respect to various polygenic traits under different

doses in T-23

         Dose Grain Panicle Number of 100-grain Number of Plant Days Days to
EMS treatments yield length grains weight (g) effective height to 50% maturity

plant-1 (g) (cm) panicle-1 tillers plant-1 (cm) flowering

0.8% M
0

6.1 23.65 98.80 2.12 5.25 115.27 115.75 145.75
± 0.30 ± 0.53 ± 1.90 ± 0.04 ± 0.15 ± 0.90 ± 0.48 ± 0.87

M
2

6.60* 24.5* 94.70@ 2.10 5.35* 105.67@ 111.54@ 143.40@

± 0.36 ± 0.30 ± 2.05 ± 0.09 ± 0.22 ±2.02 ±0. 45 ±1.32
M

3
7.96* 23.99 85.47@ 2.22* 5.87* 110.60 114.00@ 143.60@

± 0.36 ± 0.32 ± 1.29 ± 0.07 ± 0.23 ± 2.33 ± 0.35 ± 0.34

1.0% M
0

5.70 23.92 89.00 2.22 5.00 107.77 170.00 147.00
± 0.37 ± 0.28 ± 2.30 ± 0.08 ± 0.12 ± 1.53 ± 0.57 ±1.29

M
2

5.79 24.14* 92.37* 1.90@ 5.21* 106.44 111.18@ 141.02@

±  0.26  ± 0.33 ± 1.76 ± 0.07 ± 0.24 ± 2.46 ± 0.49 ± 0.65
M

3
7.79* 23.72 81.31@ 2.28 5.43* 107.62 112.92@ 143.45@

± 0.28 ± 0.38 ± 1.70 ± 0. 07 ± 0.16 ± 2.43 ± 0.40 ± 0.29
1.2% M

0
6.90 23.97 99.50 2.17 5.85 109.80 115.75 147.25
± 0.51 ± 0.33 ± 1.97 ±0.06 ± 0.51 ± 1.96 ± 0.85 ± 1.85

M
2

6.60 24.01 91.04@ 1.98@ 5.39 107.80 112.10@ 142.86@

± 0.19 ± 0.22 ± 1.36 ± 0.07 ± 0.22 ± 2.17 ± 0.42 ± 0.50
M

3
7.53* 23.77 82.99@ 2.26* 5.82 108.90 113.46@ 143.78@

± 0.27 ± 0.42 ± 1.86 ± 0.08 ± 0.17 ± 1.58 ± 0.39 ± 0.35
Gamma-rays

25 kR M
0

8.80 24.27 104.70 2.00 6.40 114.75 118.00 148.75
± 0.32 ± 0.29 ± 3.15 ± 0.08 ± 0.26 ± 1.53 ± 0.58 ± 1.11

M
2

8.07@ 25.10* 98.90@ 1.86@ 5.62@ 112.99@ 112.27@ 142.18@

± 0.25 ± 0.27 ± 2.18 ± 0.09 ± 0.16 ± 1.63 ± 0.45 ± 0.78
M

3
8.97* 24.74* 96.48@ 2.18* 5.98@ 115.22 113.57@ 143.72@

± 0.36 ± 0.33 ± 1.40 ± 0.09 ± 0.21 ± 1.55 ± 0.39 ± 0.42

30 kR M
0

7.90 24.00 97.05 2.02 5.15 112.27 116.75 148.50
± 0.47 ± 0.30 ± 2.65 ± 0.06 ± 0.09 ± 0.97 ± 1.11 ± 0.86

M
2

6.23@ 24.64* 85.52@ 2.11* 5.23* 112.50* 112.90@ 142.30@

± 0.27 ± 0.29 ± 1.65 ± 0.08 ± 0.21 ± 1.39 ± 1.15 ± 2.56
M

3
8.03 23.63 84.96@ 2.25* 5.82* 114.60 114.69@ 144.40@

± 0.29 ± 0.29 ± 1.33 ± 0.08 ± 0.19 ± 2.09 ± 0.42 ± 0.42

35 kR M
0

7.25 24.47 103.35 2.15 5.35 111.50 115.75 146.25
± 0.30 ± 0.53 ± 1.90 ± 0.04 ± 0.15 ± 0.90 ± 0.48 ± 0.87

M
2

7.27 25.23* 103.42 1.98@ 5.53* 109.31* 112.47@ 143.24@

± 0.29 ± 0.19 ± 0.80 ± 0.07 ± 0.17 ± 1.91 ± 0.46 ± 0.51
M

3
9.08* 23.80 86.08@ 2.23* 6.14* 115.14@ 113.74@ 143.60@

± 0.39 ± 0.21 ± 1.04 ± 0.07 ± 0.17 ± 0.80 ± 0.34 ± 0.31

* Significant +ve shift in mean @ Significant –ve shift in mean
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Table 2. Estimates of parameters of variability for various polygenic traits in M
2
 and M

3
 generation under different doses in

T-23

Traits EMS Gamma-rays

     0.8%     1.0%     1.2%    25 kR   30 kR   35 kR

M
2

M
3

M
2

M
3

M
2

M
3

M
2

M
3

M
2

M
3

M
2

M
3

Grain yield PCV (%) 32.52 39.74 36.62 42.07 28.63 32.58 24.13 24.97 28.71 26.82 26.11 28.61
plant-1 (g) GCV (%) 29.91 38.87 32.74 42.20 27.17 30.92 22.92 24.03 26.10 28.18 22.03 26.31

H (%) 90.03 95.70 79.91 91.62 90.05 90.07 90.24 92.62 82.64 88.14 71.22 84.59
GA (%) 42.73 54.34 33.44 51.84 39.76 25.20 46.62 57.98 29.07 59.10 34.56 35.97

Panicle PCV (%) 7.10 6.97 12.20 8.37 9.70 7.65 8.80 8.23 10.10 9.41 11.38 9.28
length (cm) GCV (%) 6.70 6.54 11.94 7.98 8.90 6.58 7.70 7.07 9.97 9.29 11.07 8.85

H (%) 89.19 88.20 95.85 90.88 84.31 73.78 76.79 73.80 97.53 97.26 94.66 90.99
GA (%) 11.52 1102 16.40 14.11 12.67 11.99 8.41 7.89 18.29 12.44 12.80 9.76

Number of PCV (%) 27.03 21.18 30.65 25.91 27.52 23.36 21.32 19.26 26.43 24.62 27.60 21.87
grains panicle-1 GCV (%) 26.20 19.86 30.10 25.08 26.27 22.13 20.97 18.86 24.41 22.38 27.20 21.54

H (%) 93.94 87.89 96.47 93.64 91.10 89.74 96.75 95.85 85.35 62.60 97.26 96.96
GA (%) 29.94 23.93 32.48 32.15 29.90 28.81 35.86 25.34 37.54 25.14 30.31 29.50

100-grain PCV (%) 17.03 18.57 17.43 22.34 12.73 16.96 12.57 16.85 13.85 16.28 15.08 19.24
weight (g) GCV (%) 15.64 17.44 16.58 21.41 11.43 15.71 11.80 16.05 11.06 14.16 13.01 17.21

H (%) 84.37 88.23 90.50 91.84 80.67 85.81 88.03 90.74 70.16 75..67 74.38 80.02
GA (%) 16.90 19.86 18.51 18.64 20.11 21.88 25.65 21.13 20.75 23.01 14.94 18.32

Effective PCV (%) 21.78 22.52 21.79 24.33 20.63 21.82 17.50 19.61 19.45 33.21 26.34 26.83
tillers plant-1 GCV (%) 19.58 20.70 20.52 24.12 19.75 20.85 16.67 18.96 19.05 32.92 19.40 20.34

H (%) 8085 85.07 97.44 98.28 91.32 91.67 90.70 93.95 95.86 98.24 52.51 59.61
GA (%) 28.18 27.77 36.93 35.22 30.76 31.35 24.69 34.26 33.08 38.33 19.65 19.73

Plant PCV (%) 7.46 6.30 8.37 2.66 7.08 6.77 6.93 4.76 7.60 5.98 7.28 6.05
height (cm) GCV (%) 6.93 5.60 8.17 1.94 6.92 6.61 6.74 4.50 7.10 5.35 6.34 5.00

H (%) 86.20 79.33 95.31 52.92 95.64 95.14 94.67 89.17 87.23 80.07 75.08 68.28
GA (%) 8.33 7.03 9.06 8.14 9.51 7.51 10.17 8.34 9.39 8.46 8.03 7.10

Days to 50 % PCV (%) 3.81 3.80 3.68 3.32 3.22 3.08 3.76 3.02 3.59 3.04 4.78 3.11
flowering GCV (%) 3.70 3.68 3.12 2.66 3.11 2.96 3.67 2.90 3.44 2.90 4.54 2.72

H (%) 92.98 92.70 71.65 64.15 90.05 92.55 94.80 92.20 91.90 89.32 89.43 76.72
GA (%) 5.33 4.14 3.24 3.15 6.00 3.92 5.18 4.95 4.02 2.60 4.37 3.53

Days to PCV (%) 3.48 2.90 2.96 2.45 2.59 2.55 2.83 1.94 2.59 2.60 3.37 2.98
maturity GCV (%) 3.12 2.40 2.70 2.13 2.41 2.40 2.57 1.52 2.46 1.59 2.47 1.90

H (%) 80.35 72.10 83.40 73.50 88.61 88.17 82.44 61.81 65.54 52.51 53.62 40.55
GA (%) 3.04 2.13 3.22 2.26 3.60 3.52 3.78 2.62 2.93 2.60 1.99 1.57

plant-1 in the M
2
 generation, indicating both the mutagens

had drastic effect, which, however, persisted only in
the M

2
 generation. The recovery of the damage for

this trait in M
3
 could be attributed to the selection applied

when the normal looking plants in M
2
 were taken to

raise the M
3
 generation. This could have led to the

elimination of the plants carrying gross chromosomal
abnormalities. Scossiroli et al. (1966) also found such
an increase in the mean of the quantitative characters
in irradiated populations of Triticum as a consequence
of elimination of “bad” genes. The mean values of
panicle length were comparable to control in M

3

generation, whereas these were significantly high in all

the treatments of both the mutagens in the M
2

generation. The mean values for number of grains
panicle -1 in the EMS treated populations were
significantly lower in both the generation except under
1.0% EMS dose, where it was significantly high as
compared to control in M

2
 generation. Unlike EMS, in

the gamma irradiated populations, the mean values of
this trait were either comparable or significantly lower
to the control in the M

2
 and M

3
 generations. However,

the decrease was more in M
3
 generation as compared

to M
2
 generation. In the M

2
 generation, the mean values

for plant height in EMS treated populations did not differ
significantly form the control except under 0.8% where
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these were significantly lower to the control. The mean
values of this trait in the gamma irradiated population
were significantly lower under 25 kR and 35 kR in M

2

generation, comparable to control under 30kR in M
2

and 25 KR in the M
3
and significantly high under 30 kR

and 35 KR in M
3
 generation. The estimates of various

genetic parameters for panicle length, number of grain
panicle–1 and plant height in treated populations were
higher in the M

2
 generation than corresponding

treatment in the M
3
generation (Table2). Both gamma-

rays and EMS treatments were found effective in
shortening the vegetative stage in the M

2
 and M

3

generations. This might be due to the heritable nature
of the early flowering mutants induced in the M

2

generation. Since, variety under study was late in
flowering and maturity, induced variability in a direction
opposite to previous selection history is inevitable as
suggested by Brock (1965). The days to flowering and
maturity for all the treatments of both the mutagens
decreased significantly over the control in M

2
and M

3

generations. Both the mutagens were effective in
inducing variability in both the generations. The
parameters such as PCV, GCV, H and GA for days to
flowering and days to maturity were almost of the same
magnitude in the M

2
 and M

3
 generations for both

mutagens in all the treatments (Table2). The estimates
of PCV, GCV, H and GA were high for grain yield
plant–1

,
 number of grains panicle-1 and effective tillers

plant–1 in different treatments of both the mutagens in
the M

2
 and M

3
 generations. High GCV for grain yield

plant –1  ,  number of grains panicle-1 and effective tillers
plant–1 in rice through induced mutagenesis has also
been reported earlier by Kaul et al. (1981), Gupta and
Sharma (1994) and Mehtre et al .(1996).

Form the foregoing results, it was observed that
different quantitative traits responded differently in the
manifestation of variability in different generations. The
magnitude of the induced variability however, depended
upon the mutagens and their treatments. When
comparing both the mutagens, gamma- rays were found
to be less effective in generating polygenic variation.
Gaul (1967) and Joshi and Frey (1967) also reported
that chemical mutagens were more effective than
physical mutagen in generating polygenic variation for
morphological traits. The doses of gamma rays were
found to have linear relationship with the magnitude of
PCV and GCV, whereas, in EMS treatments these
estimates were maximum in 1.0% EMS dose.

Based upon the results obtained, two groups
of characters could be identified. Firstly, the characters
like panicle length, number of grains panicle-1, plant
height, days to flowering and days to maturity, where
the maximum variability was induced in M

2
 and there

was on further increase in the variability in the M
3

generation. In second category of characters, such as
grain yield plant -1, 100- grain weight and effective tillers
plant-1

;
 substantial variability was generated in M

2
, which

was further enhanced wherever the material was
advanced to M

3
 generation. Among the major factors

contributing to the release of additional variation in the
advance generation is the increased frequency of
genetic recombination subsequent to mutational events
as well as higher frequency of crossing over at unusual
places e.g. near the centromere (Whittinghill, 1951;
Lawrence 1961), background of the genotype and
duplicate or multiplicate inheritance  of the characters
(Swaminathan, 1965).

In mutation breeding an important question
arises, whether the selection of micromutations should
be started in the M

2
 or later generations? Although

several experiments have been conducted in the past
with the aim of inducing micromutations, few studies
seem to have been undertaken to assess the extent of
induced variability following treatment of plants in
different generations. Palenzona (1966), while studying
progress of selection for quantitative traits in wheat
concluded that selection started in M

3
 was more

effective that if started in the M
2
 generation. Scossiroli

(1968), on the other hand did not observe large
differences when the selection was started in the M

2

or M
3
generations. Selection for quantitative traits in

the M
3
to M

5
 generation was found to be more efficient

than M
2
 generation (Jana and Roy, 1973; Yonejawa et

al., 1973; Yonejawa, 1979). Yonejawa and Yamgata
(1975) further observed that the efficiency of mutation
breeding could be in some cases increased greatly by
application of delayed selection methods. In the present
investigation, an attempt was made to examine the
appropriate generation for selection. The studies
revealed that different quantitative traits responded
differently in the manifestation of variability in different
generations. The selection for a particular trait should
be carried out in a particular generation when the
highest degree of induced genetic variance is generated
and mean is stabilized in favourable direction.
Accordingly, in the present material selection for panicle
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length, number of grains panicle-1,plant height, days to
flowering and days to maturity should be started in M

2
,

whereas for grain yield plant-1, 100 grain weight and
effective tillers plant-1  in the M

3
generation.
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